资源类型

期刊论文 378

年份

2023 60

2022 43

2021 42

2020 28

2019 30

2018 21

2017 37

2016 9

2015 18

2014 13

2013 5

2012 6

2011 7

2010 4

2009 7

2008 11

2007 7

2006 5

2005 2

2004 1

展开 ︾

关键词

多晶硅 3

晶体硅太阳电池 2

肥胖 2

2-羟基丁酸 1

2016年熊本地震 1

AD9954 1

ALOS-2 PALSAR-2 1

Beclin-1 1

CD44 1

COVID-19 1

CP);符号间干扰(inter symbol interference, ISI);载波间干扰(inter carrier interference 1

Cu(Inx 1

Ga1–x)Se2 1

Grade 91钢 1

ICI);最大似然估计(maximum likelihood estimation 1

MLE) 1

N-聚糖 1

OFDM 1

OFDM);快速傅立叶变换(Fast Fourier transform, FFT);循环前缀(cyclic prefix 1

展开 ︾

检索范围:

排序: 展示方式:

Analysis on annealing-induced stress of blind-via TSV using FEM

Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 401-410 doi: 10.1007/s11465-017-0457-7

摘要:

Copper-filled through silicon via (TSV) is a promising material owing to its application in high-density three-dimensional (3D) packaging. However, in TSV manufacturing, thermo-mechanical stress is induced during the annealing process, often causing reliability issues. In this paper, the finite element method is employed to investigate the impacts of via shape and SiO2 liner uniformity on the thermo-mechanical properties of copper-filled blind-via TSV after annealing. Top interface stress analysis on the TSV structure shows that the curvature of via openings releases stress concentration that leads to ~60 MPa decrease of normal stresses, sxx and syy, in copper and ~70 MPa decrease sxx of in silicon. Meanwhile, the vertical interface analysis shows that annealing-induced stress at the SiO2/Si interface depends heavily on SiO2 uniformity. By increasing the thickness of SiO2 linear, the stress at the vertical interface can be significantly reduced. Thus, process optimization to reduce the annealing-induced stress becomes feasible. The results of this study help us gain a better understanding of the thermo-mechanical behavior of the annealed TSV in 3D packaging.

关键词: through silicon via (TSV)     annealing-induced stress     interface stress     plastic deformation     finite element method    

Erratum to: Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated

《能源前沿(英文)》 2022年 第16卷 第5期   页码 876-877 doi: 10.1007/s11708-022-0832-x

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous

《能源前沿(英文)》 2021年 第15卷 第3期   页码 772-780 doi: 10.1007/s11708-021-0783-7

摘要: MoS2 is a promising electrocatalyst for hydrogen evolution reaction and a good candidate for cocatalyst to enhance the photoelectrochemical (PEC) performance of Si-based photoelectrode in aqueous electrolytes. The main challenge lies in the optimization of the microstructure of MoS2, to improve its catalytic activity and to construct a mechanically and chemically stable cocatalyst/Si photocathode. In this paper, a highly-ordered mesoporous MoS2 was synthesized and decorated onto a TiO2 protected p-silicon substrate. An additional TiO2 necking was introduced to strengthen the bonding between the MoS2 particles and the TiO2 layer. This meso-MoS2/TiO2/p-Si hybrid photocathode exhibited significantly enhanced PEC performance, where an onset potential of +0.06 V (versus RHE) and a current density of −1.8 mA/cm2 at 0 V (versus RHE) with a Faradaic efficiency close to 100% was achieved in 0.5 mol/L H2SO4. Additionally, this meso-MoS2/TiO2/p-Si photocathode showed an excellent PEC ability and durability in alkaline media. This paper provides a promising strategy to enhance and protect the photocathode through high-performance surface cocatalysts.

关键词: photoelectrocatalysis     hydrogen evolution     Si photocathode     mesoporous MoS2    

Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltrationmembranes via electron beam irradiation

《环境科学与工程前沿(英文)》 2023年 第18卷 第4期 doi: 10.1007/s11783-024-1805-6

摘要:

● Urethane functionalities created on PES membranes via electron beam irradiation.

关键词: Surface functionalization     Electron beam irradiation     Microfiltration     Endocrine disrupting chemicals    

Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Jianguo LIU,Hui CAI,Congcong MEI,Mingxin WANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 905-911 doi: 10.1007/s11783-015-0786-x

摘要: The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg and 1000 mg·kg ). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg , the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg )>moderate Pb stress (500 mg·kg )>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.

关键词: silicon (Si)     lead (Pb)     rice (Oryza sativa L.)     toxicity     accumulation    

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

《能源前沿(英文)》 2011年 第5卷 第3期   页码 305-312 doi: 10.1007/s11708-011-0155-9

摘要: A computer simulator with a global model of heat transfer during crystal growth of Si for solar cells is developed. The convective, conductive, and radiative heat transfers in the furnace are solved together in a coupled manner using the finite volume method. A three-dimensional (3D) global heat transfer model with 3D features is especially made suitable for any crystal growth, while the requirement for computer resources is kept permissible for engineering applications. A structured/unstructured combined mesh scheme is proposed to improve the efficiency and accuracy of the simulation. A dynamic model for the melt-crystal (mc) interface is developed to predict the phase interface behavior in a crystal growth process. Dynamic models for impurities and precipitates are also incorporated into the simulator. Applications of the computer simulator to Czochralski (CZ) growth processes and directional solidification processes of Si crystals for solar cells are introduced. Some typical results, including the turbulent melt flow in a large-scale crucible of a CZ-Si process, the dynamic behaviors of the mc interface, and the transport and distributions of impurities and precipitates, such as oxygen, carbon, and SiC particles, are presented and discussed. The findings show the importance of computer modeling as an effective tool in the analysis and improvement of crystal growth processes and furnace designs for solar Si material.

关键词: computer modeling     silicon     crystal growth     solar cells    

Atomistic understanding of interfacial processing mechanism of silicon in water environment: A ReaxFF

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 570-579 doi: 10.1007/s11465-021-0642-6

摘要: The interfacial wear between silicon and amorphous silica in water environment is critical in numerous applications. However, the understanding regarding the micro dynamic process is still unclear due to the limitations of apparatus. Herein, reactive force field simulations are utilized to study the interfacial process between silicon and amorphous silica in water environment, exploring the removal and damage mechanism caused by pressure, velocity, and humidity. Moreover, the reasons for high removal rate under high pressure and high velocity are elucidated from an atomic perspective. Simulation results show that the substrate is highly passivated under high humidity, and the passivation layer could alleviate the contact between the abrasive and the substrate, thus reducing the damage and wear. In addition to more Si-O-Si bridge bonds formed between the abrasive and the substrate, new removal pathways such as multibridge bonds and chain removal appear under high pressure, which cause higher removal rate and severer damage. At a higher velocity, the abrasive can induce extended tribochemical reactions and form more interfacial Si-O-Si bridge bonds, hence increasing removal rate. These results reveal the internal cause of the discrepancy in damage and removal rate under different conditions from an atomic level.

关键词: silicon     ReaxFF     molecular dynamics     friction     damage    

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

《机械工程前沿(英文)》 2007年 第2卷 第1期   页码 120-124 doi: 10.1007/s11465-007-0021-y

摘要: Light-weight high-silicon aluminum alloys are used for electronic packaging in the aviation and space-flight industry. Al-30Si and Al-40Si are fabricated with air-atomization and vacuum-canning hot-extrusion process. The density, thermal conductivity, hermeticity and thermal expansion coefficients of the material are measured, and the relationship between extrusion temperature and properties is obtained. Experimental results show that the density of high-silicon aluminum alloys prepared with this method is as high as 99.64% of the theory density, and increases with elevating extrusion temperature. At the same time, thermal conductivity varies between 104-140 W/(m " K); with the extrusion temperature, thermal expansion coefficient also increases but within 13?10 (at 100?C) and hermeticity of the material is high to 10 order of magnitude.

关键词: coefficient     hermeticity     temperature     relationship     air-atomization    

硅及硅基半导体材料中杂质缺陷和表面的研究

屠海令

《中国工程科学》 2000年 第2卷 第1期   页码 7-17

摘要:

随着超大规模集成电路设计线宽向深亚微米级(<0.5μm)和亚四分之一微米级(<0.25μm)发展,对半导体硅片及其它硅基材料的质量要求越来越高,研究上述材料中各种杂质的行为,控制缺陷类型及数量,提高晶体完整性,降低表面污染和采用缺陷工程的方法改善材料质量显得尤为重要。文章阐述了深亚微米级和亚四分之一微米级集成电路用大直径硅材料中铁、铜金属和氧、氢、氮非金属杂质元素的行为,点缺陷及其衍生缺陷的本质与控制方法,硅片表面形貌、表面污染与检测方法的研究热点。同时还介绍了外延硅、锗硅及绝缘体上硅(SOI)等硅基材料的特性、制备及工艺技术发展趋势,展望了跨世纪期间硅及硅基材料产业发展的技术经济前景。

关键词: 硅片     硅外延片     锗硅     绝缘体上硅     杂质行为     缺陷控制     表面质量    

Laser enhanced gettering of silicon substrates

Daniel CHEN,Matthew EDWARDS,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

《能源前沿(英文)》 2017年 第11卷 第1期   页码 23-31 doi: 10.1007/s11708-016-0441-7

摘要: One challenge to the use of lightly-doped, high efficiency emitters on multicrystalline silicon wafers is the poor gettering efficiency of the diffusion processes used to fabricate them. With the photovoltaic industry highly reliant on heavily doped phosphorus diffusions as a source of gettering, the transition to selective emitter structures would require new alternative methods of impurity extraction. In this paper, a novel laser based method for gettering is investigated for its impact on commercially available silicon wafers used in the manufacturing of solar cells. Direct comparisons between laser enhanced gettering (LasEG) and lightly-doped emitter diffusion gettering demonstrate a 45% absolute improvement in bulk minority carrier lifetime when using the laser process. Although grain boundaries can be effective gettering sites in multicrystalline wafers, laser processing can substantially improve the performance of both grain boundary sites and intra-grain regions. This improvement is correlated with a factor of 6 further decrease in interstitial iron concentrations. The removal of such impurities from multicrystalline wafers using the laser process can result in intra-grain enhancements in implied open-circuit voltage of up to 40 mV. In instances where specific dopant profiles are required for a diffusion on one surface of a solar cell, and the diffusion process does not enable effective gettering, LasEG may enable improved gettering during the diffusion process.

关键词: gettering     multicystaline     silicon     impurities     laser doping    

Special issue: Technologies for future high-efficiency industrial silicon wafer solar cells

《能源前沿(英文)》 2017年 第11卷 第1期   页码 1-3 doi: 10.1007/s11708-016-0436-4

Effects of taping on grinding quality of silicon wafers in backgrinding

Zhigang DONG, Qian ZHANG, Haijun LIU, Renke KANG, Shang GAO

《机械工程前沿(英文)》 2021年 第16卷 第3期   页码 559-569 doi: 10.1007/s11465-020-0624-0

摘要: Taping is often used to protect patterned wafers and reduce fragmentation during backgrinding of silicon wafers. Grinding experiments using coarse and fine resin-bond diamond grinding wheels were performed on silicon wafers with tapes of different thicknesses to investigate the effects of taping on peak-to-valley (PV), surface roughness, and subsurface damage of silicon wafers after grinding. Results showed that taping in backgrinding could provide effective protection for ground wafers from breakage. However, the PV value, surface roughness, and subsurface damage of silicon wafers with taping deteriorated compared with those without taping although the deterioration extents were very limited. The PV value of silicon wafers with taping decreased with increasing mesh size of the grinding wheel and the final thickness. The surface roughness and subsurface damage of silicon wafers with taping decreased with increasing mesh size of grinding wheel but was not affected by removal thickness. We hope the experimental finding could help fully understand the role of taping in backgrinding.

关键词: taping     silicon wafer     backgrinding     subsurface damage     surface roughness    

Ultraviolet exposure enhanced silicon direct bonding

Guanglan LIAO, Xuekun ZHANG, Xiaohui LIN, Canghai MA, Lei NIE, Tielin SHI,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 87-92 doi: 10.1007/s11465-009-0078-x

摘要: Ultraviolet (UV) exposure, as an additional technique following the traditional wet chemical activation processes, is applied to enhance hydrophilic silicon direct bonding. The effects of UV exposure on silicon wafers’ nano-topography and bonding strength are studied. It is found that the surface roughness of silicon wafers initially decreases and then increases with UV exposure time, and the bonding strength increases and then decreases accordingly. The correlations of annealing temperature and annealing time vs. bonding strength are experimentally explored. Results indicate that the bonding strength increases sharply then gently with increasing annealing temperature and annealing time using UV exposure. Besides, the reliability of silicon direct bonding with UV exposure enhancement after the high/low temperature cycle test, constant temperature and humidity test, vibration test and shock test is investigated. It follows from the results that the bonding strength of silicon wafer pairs with UV exposure decreases after the environmental tests, whereas the residual strength is still higher than that without UV exposure, and the variation trends of bonding strength vs. UV exposure time, annealing temperature and annealing time remain unchanged. Therefore, following the traditional wet chemical activation processes, appropriate UV exposure (about three minutes in this study) is effective and promising to enhance silicon direct bonding.

关键词: ultraviolet (UV) exposure     silicon direct bonding     bonding strength     reliability    

Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination

Jingbin Wen, Kuiyi You, Minjuan Chen, Jian Jian, Fangfang Zhao, Pingle Liu, Qiuhong Ai, He’an Luo

《化学科学与工程前沿(英文)》 2021年 第15卷 第3期   页码 654-665 doi: 10.1007/s11705-020-1973-2

摘要: In this work, a new mesoporous silicon sulfonic acid catalyst derived from silicic acid has been successfully prepared by the chemical bonding method. The physicochemical properties of mesoporous silicon sulfonic acid catalysts have been systematically characterized using various techniques. The results demonstrate that sulfonic acid groups have been grafted on silicic acid by forming a new chemical bond (Si–O–S). The mesoporous silicon sulfonic acid exhibits excellent catalytic performance and stability in the vapor phase hydroamination reaction of cyclohexene with cyclohexylamine. Cyclohexene conversion of 61% and 97% selectivity to dicyclohexylamine was maintained after running the reaction for over 350 h at 280 °C. The developed mesoporous silicon sulfonic acid catalyst shows advantages of low cost, superior acid site accessibility, and long term reactivity stability. Moreover, a possible catalytic hydroamination reaction mechanism over silicon sulfonic acid was suggested. It has been demonstrated that the sulfonic acid groups of the catalyst play an important role in the hydroamination. The present work provides a simple, efficient, and environmentally friendly method for the hydroamination of cyclohexene to valuable dicyclohexylamine, which also shows important industrial application prospects.

关键词: mesoporous silicon sulfonic acid     catalytic hydroamination     cyclohexene     dicyclohexylamine     vapor phase    

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0974-y

摘要: This paper presents an investigation of the feasibility of recycling silicon carbide waste (SCW) as a source of mixture materials in the production of cement mortar. Mortars with SCW were prepared by replacing different amounts of cement with SCW, and the properties of the resulting mortars, such as the fluidity, strength and shrinkage, were studied in this work. Thermogravimetry-differential scanning calorimetry and scanning electron microscopy were employed to understand the reasons for the property changes of the mortars. The results indicate that SCW decreases the initial and 1-h fluidity of fresh mortar but improves the loss of fluidity. The mortar with SCW exhibits a lower strength at 3 d and 7 d but a higher strength at 28 d and 56 d compared to the control. The shrinkage rate of cement mortar with SCW shows an obvious decrease as the replacement ratio increases. In addition, the content of calcium hydroxide in hardened paste also shows that SCW has some impact on the hydration of the cement-SCW system. The microstructures of the hardened paste also show evidence for a later strength change of mortar containing SCW. This work provides a strategic reference for possibly applying SCW as a mixture material in the production of cement mortar.

关键词: Silicon carbide waste     Cement mortar     Fluidity     Strength     Shrinkage    

标题 作者 时间 类型 操作

Analysis on annealing-induced stress of blind-via TSV using FEM

Jie SHAO, Tielin SHI, Li DU, Lei SU, Xiangning LU, Guanglan LIAO

期刊论文

Erratum to: Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated

期刊论文

Enhancing the photoelectrochemical performance of p-silicon through TiO coating decorated with mesoporous

期刊论文

Removal of endocrine disrupting chemicals from water through urethane functionalization of microfiltrationmembranes via electron beam irradiation

期刊论文

Effects of nano-silicon and common silicon on lead uptake and translocation in two rice cultivars

Jianguo LIU,Hui CAI,Congcong MEI,Mingxin WANG

期刊论文

Computer modeling of crystal growth of silicon for solar cells

Lijun LIU, Xin LIU, Zaoyang LI, Koichi KAKIMOTO

期刊论文

Atomistic understanding of interfacial processing mechanism of silicon in water environment: A ReaxFF

期刊论文

Effect of extrusion temperature on the physical properties of high-silicon aluminum alloy

YANG Fuliang, GAN Weiping, CHEN Zhaoke

期刊论文

硅及硅基半导体材料中杂质缺陷和表面的研究

屠海令

期刊论文

Laser enhanced gettering of silicon substrates

Daniel CHEN,Matthew EDWARDS,Stuart WENHAM,Malcolm ABBOTT,Brett HALLAM

期刊论文

Special issue: Technologies for future high-efficiency industrial silicon wafer solar cells

期刊论文

Effects of taping on grinding quality of silicon wafers in backgrinding

Zhigang DONG, Qian ZHANG, Haijun LIU, Renke KANG, Shang GAO

期刊论文

Ultraviolet exposure enhanced silicon direct bonding

Guanglan LIAO, Xuekun ZHANG, Xiaohui LIN, Canghai MA, Lei NIE, Tielin SHI,

期刊论文

Mesoporous silicon sulfonic acid as a highly efficient and stable catalyst for the selective hydroamination

Jingbin Wen, Kuiyi You, Minjuan Chen, Jian Jian, Fangfang Zhao, Pingle Liu, Qiuhong Ai, He’an Luo

期刊论文

Silicon carbide waste as a source of mixture materials for cement mortar

Zhengwu Jiang, Qiang Ren, Haoxin Li, Qing Chen

期刊论文